diff -r 000000000000 -r bd6bb22c6533 kstmApp/src/pi_2_dht_read.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/kstmApp/src/pi_2_dht_read.c Fri Aug 14 11:30:43 2015 +0200 @@ -0,0 +1,162 @@ +// Copyright (c) 2014 Adafruit Industries +// Author: Tony DiCola + +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: + +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. + +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. +#include +#include + +#include "pi_2_dht_read.h" +#include "pi_2_mmio.h" + +// This is the only processor specific magic value, the maximum amount of time to +// spin in a loop before bailing out and considering the read a timeout. This should +// be a high value, but if you're running on a much faster platform than a Raspberry +// Pi or Beaglebone Black then it might need to be increased. +#define DHT_MAXCOUNT 32000 + +// Number of bit pulses to expect from the DHT. Note that this is 41 because +// the first pulse is a constant 50 microsecond pulse, with 40 pulses to represent +// the data afterwards. +#define DHT_PULSES 41 + +int pi_2_dht_read(int type, int pin, float* humidity, float* temperature) { + // Validate humidity and temperature arguments and set them to zero. + if (humidity == NULL || temperature == NULL) { + return DHT_ERROR_ARGUMENT; + } + *temperature = 0.0f; + *humidity = 0.0f; + + // Initialize GPIO library. + if (pi_2_mmio_init() < 0) { + return DHT_ERROR_GPIO; + } + + // Store the count that each DHT bit pulse is low and high. + // Make sure array is initialized to start at zero. + int pulseCounts[DHT_PULSES*2] = {0}; + + // Set pin to output. + pi_2_mmio_set_output(pin); + + // Bump up process priority and change scheduler to try to try to make process more 'real time'. + set_max_priority(); + + // Set pin high for ~500 milliseconds. + pi_2_mmio_set_high(pin); + sleep_milliseconds(500); + + // The next calls are timing critical and care should be taken + // to ensure no unnecssary work is done below. + + // Set pin low for ~20 milliseconds. + pi_2_mmio_set_low(pin); + busy_wait_milliseconds(20); + + // Set pin at input. + pi_2_mmio_set_input(pin); + // Need a very short delay before reading pins or else value is sometimes still low. +volatile int i; + for (i = 0; i < 50; ++i) { + } + + // Wait for DHT to pull pin low. + uint32_t count = 0; + while (pi_2_mmio_input(pin)) { + if (++count >= DHT_MAXCOUNT) { + // Timeout waiting for response. + set_default_priority(); + return DHT_ERROR_TIMEOUT; + } + } + + // Record pulse widths for the expected result bits. + int j; + for ( j=0; j < DHT_PULSES*2; j+=2) { + // Count how long pin is low and store in pulseCounts[i] + while (!pi_2_mmio_input(pin)) { + if (++pulseCounts[i] >= DHT_MAXCOUNT) { + // Timeout waiting for response. + set_default_priority(); + return DHT_ERROR_TIMEOUT; + } + } + // Count how long pin is high and store in pulseCounts[i+1] + while (pi_2_mmio_input(pin)) { + if (++pulseCounts[i+1] >= DHT_MAXCOUNT) { + // Timeout waiting for response. + set_default_priority(); + return DHT_ERROR_TIMEOUT; + } + } + } + + // Done with timing critical code, now interpret the results. + + // Drop back to normal priority. + set_default_priority(); + + // Compute the average low pulse width to use as a 50 microsecond reference threshold. + // Ignore the first two readings because they are a constant 80 microsecond pulse. + uint32_t threshold = 0; + int k; + for (k=2; i < DHT_PULSES*2; k+=2) { + threshold += pulseCounts[k]; + } + threshold /= DHT_PULSES-1; + + // Interpret each high pulse as a 0 or 1 by comparing it to the 50us reference. + // If the count is less than 50us it must be a ~28us 0 pulse, and if it's higher + // then it must be a ~70us 1 pulse. + uint8_t data[5] = {0}; + int l; + for ( l=3; l < DHT_PULSES*2; l+=2) { + int index = (l-3)/16; + data[index] <<= 1; + if (pulseCounts[l] >= threshold) { + // One bit for long pulse. + data[index] |= 1; + } + // Else zero bit for short pulse. + } + + // Useful debug info: + //printf("Data: 0x%x 0x%x 0x%x 0x%x 0x%x\n", data[0], data[1], data[2], data[3], data[4]); + + // Verify checksum of received data. + if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) { + if (type == DHT11) { + // Get humidity and temp for DHT11 sensor. + *humidity = (float)data[0]; + *temperature = (float)data[2]; + } + else if (type == DHT22) { + // Calculate humidity and temp for DHT22 sensor. + *humidity = (data[0] * 256 + data[1]) / 10.0f; + *temperature = ((data[2] & 0x7F) * 256 + data[3]) / 10.0f; + if (data[2] & 0x80) { + *temperature *= -1.0f; + } + } + return DHT_SUCCESS; + } + else { + return DHT_ERROR_CHECKSUM; + } +}